 鲜花( 53)  鸡蛋( 0)
|
This can by done by Induction
Show that for all integers n >1, n^3 - n can be divided by 3. (Note: n^3 stands for n*n*n)% {9 R9 y9 S! ]. {4 t, g8 T1 B( M
$ w9 r a: L9 u# Q: i9 f" Y
Proof:
3 s1 d9 f4 G9 E& [5 [3 kLet n >1 be an integer
! t/ N( P) D- O: \' D9 jBasis: (n=2)
% d* M% M+ ?0 J. S* I7 L9 v) @ 2^3 - 2 = 2*2*2 –2 = 6 which can be divided by 3
- V0 _8 E; D2 B2 M' b3 w+ ~/ J4 t. _7 }
Induction Hypothesis: Let K >=2 be integers, support that$ W! l2 P, e) w8 r
K^3 – K can by divided by 3.3 }- A: U5 |1 Z7 x
' U, f* d0 I" N" [" a; N/ z- rNow, we need to show that ( K+1)^3 - ( K+1) can be divided by 3
( T3 {3 b9 q# a- d2 gsince we have (K+1)^3 = K^3 +3K^2 + 3K +1 by Binomial Theorem- D/ O0 U3 o2 _$ c8 {
Then we have (K+1)^3 – ( K+1) = K^3 +3K^2 + 3K +1 –(K+1)
. a( j" f9 h5 d! M7 j7 R* d = K^3 + 3K^2 + 2K
3 S3 O+ b9 o+ H9 } = ( K^3 – K) + ( 3K^2 + 3K)6 {4 ?$ b5 ? N" f
= ( K^3 – K) + 3 ( K^2 + K)
1 \: c0 ^- x8 W; Q2 U0 w) pby Induction Hypothesis, we know that k^3 – k can by divided by 3 which means that k^3 – k = 3 X for some integer X>04 I4 O1 K9 e7 U( ^9 V0 y3 Q5 A
So we have (K+1)^3 – ( K+1) = ( K^3 – K) + 3 ( K^2 + K)* j6 \- o) [/ t7 _/ [6 W K
= 3X + 3 ( K^2 + K)/ \- l5 G: I) O4 C
= 3(X+ K^2 + K) which can be divided by 3
, F' s# z5 O/ T# M' a" X
$ S8 E r; h7 rConclusion: By the Principle of Mathematics Induction, n^3 - n can be divided by 3 For all integers n >1.
0 X8 b0 l4 D( q9 K0 u% o: h" B0 x
5 X7 W. u1 a6 ?, A+ ]' f[ Last edited by 悟空 on 2005-2-23 at 10:06 AM ] |
|